
66 The Delphi Magazine Issue 55

The Delphi
CLINIC

Edited by Brian Long

Problems with your Delphi project?

Just email Brian Long, our Delphi
Clinic Editor, on clinic@blong.com

procedure ARoutine(Obj: TObject);
begin
if Obj is TFoo then
TFoo(Obj).Bar

end;

➤ Listing 1: An ‘is’ test
that fails for a reader.

RTTI And Module Boundaries

QI have a project comprising
an EXE and some DLLs. One

of the DLLs exports a routine that
takes a TObject parameter. This ob-
ject can potentially be one of a
number of different class types so I
chose the most basic common an-
cestor type of TObject. The routine
is called by code in the EXE, and
from some of the other DLLs. To
identify the type of object passed,
the routine uses the is operator
(Listing 1). However, in the cases
where the object is not created by
the DLL that implements the rou-
tine, the is operator always
returns False. Why is this?

AAnswering this question re-
lies upon knowledge of what

the is operator does to produce a
result. With this knowledge, it
should be fairly clear why it fails.

Rather than just looking at is in
isolation, we will also look at the as
operator, so we can see exactly

what both of these operators do
when they are called.

The as operator is used for safe
typecasting of objects defined in
terms of some generic object to a
more specific type inherited from
that generic type. For example, in
an OnClick event handler, the
Sender parameter is defined to be a
TObject. Sender represents the
component that triggered the
event, and so to access that object
and manipulate its specific
properties, it needs to be cast to a
descendant type. To ensure you
get the right type, you employ the
as operator, for example:

(Sender as TButton).Hide

If the object represented by Sender
is a TButton, or inherits from
TButton, the object is cast to a
TButton and its Hide method is
called. If this is not the case an
exception is raised. The statement
above is functionally equivalent to
the code in Listing 2. This condi-
tion (or a brief assembler version
of it) is executed by the _AsClass
routine in the System unit.

This routine itself is not respon-
sible for raising the exception.
Instead, if the SysUtils unit has
been used in the project, a global
variable (ErrorProc) will point to
its ErrorHandler procedure, which
is called with a value of reInva-
lidCast (10). If SysUtils has not set
up the ErrorProc pointer, Run-
Error(219) is called instead.

Obviously, some of these details
are completely irrelevant to most
people. What is important here is
that the as operator is imple-
mented with a call to the is opera-
tor (or at least by executing the
same code that the is operator
executes).

Now let’s look at the is operator.
The first thing to note is that it
needn’t really exist at all. The

Boolean expression Sender is
TButton is functionally identical to
this class method call:

Sender.InheritsFrom(TButton)

Most people have not encountered
the TObject class function Inhe-
ritsFrom. It does exactly the same
as the is operator, but is slightly
more flexible. The is operator can
only determine the inheritance
relationship of an object (you must
place an object reference to the
left of is) whereas InheritsFrom
can test relationships between
class references. For example, this
is a valid Boolean expression which
will evaluate to True:

TBitBtn.InheritsFrom(TButton)

The implementation of a call to is
or InheritsFrom is straightforward.
It involves checking the class type
of the item in question and com-
paring it with the type passed in. If
they don’t match, you look at the
ancestor class of the item. If there
is no match, you look at that
class’s ancestor, and so on. Ulti-
mately, there will either be a match
(so True is returned) or you will get
to type TObject, which has no
ancestor (False is returned). List-
ing 3 shows the implementation of
a function that does the same job.

It might seem like the original
question has been long forgotten
by now, but Listing 3 helps us to
reach an understanding of why the
is operator fails under the
circumstances outlined in the
question.

if Sender is TButton then
TButton(Sender).Hide

else
raise EInvalidCast.Create(
'Invalid class typecast')

function IsA(Obj: TObject;
Cls: TClass): Boolean;

var
ObjCls: TClass;

begin
Result := True;
{ Get class reference
for this object }

ObjCls := Obj.ClassType;
while Assigned(ObjCls) do
{ Check class reference
against that passed in }

if ObjCls = Cls then
Exit

else
{ Get ancestor class }
ObjCls := ObjCls.ClassParent;

Result := False
end;

➤ Listing 3: A function that does
the same as ‘is’.

➤ Listing 2: An expanded version
of an ‘as’ expression.

March 2000 The Delphi Magazine 67

Remember that a DLL routine
has a Delphi object passed into it
from another module (EXE or DLL).
The is operator is used to find out
whether the object is of a certain
type and fails, even when perhaps
it shouldn’t. This happens because
of what is being compared. The
code is comparing a TClass entity
extracted either from a call to an
object’s ClassTypemethod, or from
a class’s ClassParent method.

TClass is a generic class refer-
ence type that can hold references
to any class type, so the code is
comparing class references. A
class reference is implemented as
a pointer to the VMT (virtual
method table, where virtual
method addresses are listed) of
the class in question.

When an executable creates an
object of some arbitrary type TFoo,
it can only work if the executable’s
binary image contains the imple-
mentation of TFoo’s methods and
also TFoo’s VMT. If a DLL has knowl-
edge of a type called TFoo, the impli-
cation is that the implementation
and VMT of TFoo are compiled into
the DLL’s binary image. So in the
application as a whole, there are
two implementations of TFoo, one
in the EXE and one in the DLL.

Whenever DLL code refers to
TFoo, it will be referring to its own
implementation of it. The failing
operation is one that asks an object
whose type is the executable’s TFoo
if it is an object whose type is the
DLL’s TFoo. Since the two TFoo
implementations have their own
VMTs (as well as implementa-
tions), a match is never found.

In many cases this will be a very
sensible outcome. If the executable
is compiled in Delphi 2, but the DLL
is compiled in Delphi 5, then the
binary implementation of TFoo will
differ wildly between the two com-
piled files. A result that says that
the executable’s TFoo object is not
of the type represented by the
DLL’s TFoo is probably correct.

I assume that the questioner is
compiling the DLL and EXE in the
same version of Delphi and so,
whilst the issue is technically valid,
still wishes to avoid the problem.

Two ways of dealing with the
problem occur to me. One would

be to use packages instead of DLLs.
Packages will help reduce the size
of all the binary files, sharing any
implementation of a routine or
class with all other modules, and
will make them all semantically
one application, with no logical
module divisions. Consequently,
there will be only one implementa-
tion of TFoo present and the is
operator will be forced to return
True where expected.

The alternative is to recognise
why the problem is arising, and
perform an alternative test. Since
is uses class type information
(VMT addresses), which will
always fail with an object created
in a different module, perhaps you
could just compare the class name
instead. So, instead of something
like Listing 1, you could try the
alternative test in Listing 4.

In fact, there is a VCL routine
which does just this type of class
name comparison to overcome
exactly the same problem. When
implementing drag and drop in an
application, you can make use of
special TDragObject descendants
(called drag objects) that are cre-
ated in a dragged control's OnSta-
rtDrag event handler. In the target
OnDragOver and OnDragDrop event
handlers, the Sourceparameter will
not be the dragged source control,
but the custom drag object. The
online help advises you to use
IsDragObject to verify if Source rep-
resents a drag object or not.

At first glance, you’d expect this
function to be implemented as
shown below, but it is not:

Result := Source is TDragObject

Because drag objects can cross
DLL/EXE boundaries, the imple-
mentation actually does class
name comparison, as shown in
Listing 5. For more on drag and

drop in Delphi applications, look
out for the first part of a series of
articles on the subject next month.

Object Inspector Refuses
To Make Event Handler

QI’ve just made a component
that has an event property

of a type that didn’t exist before.
Everything works fine, except that
I cannot get the Object Inspector
to correctly create a new event
handler for it in the editor. It cre-
ates the event handler, but then
says it is incompatible with the
event. I assume I need a property
editor for it. I’ve done some of
these before, but never one for an
event and I can’t seem to find any
examples anywhere.

AThe Object Inspector is all
set up to manufacture event

handlers for published properties
which have method types (events,
in other words). It relies upon the
presence of the TMethodProperty
property editor that is defined in
the DsgnIntf unit and is used as the
default editor for all published
method properties. This property
editor has built-in knowledge of
how to manufacture an event
handler for all published events.

If you have published a property
that represents an event, then
event handlers should be manu-
factured and assigned automati-
cally in all but a small subset of
cases. The problem is likely to
arise from using untyped var and
const parameters. The IDE code
that checks published methods for
compatibility with events relies
upon method types to do its job.

procedure ARoutine(Obj: TObject);
begin
if CompareText(
Obj.ClassName, 'TFoo') = 0 then
TFoo(Obj).Bar

end;

➤ Listing 4: A class name
comparison instead of
a class type comparison.

function IsDragObject(
Sender: TObject): Boolean;

var SenderClass: TClass;
begin
SenderClass := Sender.ClassType;
Result := True;
while SenderClass <> nil do
if SenderClass.ClassName =
TDragObject.ClassName then
Exit

else
SenderClass :=
SenderClass.ClassParent;

Result := False;
end;

➤ Listing 5: The IsDragObject
function which works across
DLL/EXE boundaries.

68 The Delphi Magazine Issue 55

Untyped parameters cause it to
assume (perhaps wrongly) that it
cannot make a full enough check
against other methods and so it
produces the error. Of course,
there is nothing to stop you assign-
ing the method to the event prop-
erty in code, which will work fine.

A possible way of avoiding this
problem would be to use generic
pointer parameters (of type
Pointer) instead of varparameters.
This way, you are supplying a type,
but you are still not committing
yourself to what type of data is
being referred to. The component
user who uses such an event han-
dler will still need to typecast the
parameter to an appropriate type.
So, for example, an event handler
that was intended to look like List-
ing 6 can instead look like Listing 7.

That said, it is usually a good
idea to ensure that information you
pass to event handlers is unambig-
uous and leaves no room for error
from uneducated users. Untyped
var and const parameters (as well
as untyped pointers) have a
potential for misuse, due to their
inherently ill-defined nature.

This requirement for event han-
dlers to be sort of foolproof is why
the Delphi manual advises against
defining event properties that use
function methods (as opposed to
procedures). Functions return a
value, but their default return
value is undefined (and typically
garbage). A user who forgets to
assign a return value will inadver-
tently cause garbage to be

returned. Better to use a typed var
parameter, as many of the supplied
component events do.

TStrings And Object Owners

QI have a TStringList object
that I am using for storage of

strings and objects (I use the Add-
Object method). I have a loop that
runs through the records in a table,
and each iteration in the loop sets
fields in an instance of a custom ob-
ject I have. At the end of each loop
iteration, I call the stringlist’s
AddObject method to add a string
value and the object into the list,
then go onto the next iteration.

After the table has been read, I
start another loop running through
each entry in the stringlist, adding
the string and information from the
object to cells in successive rows
of a stringgrid component. Can you
tell me why I only see the last entry
made into the list, repeated across
the rows in the grid?

AThe problem in this case is a
lack of understanding of

Delphi objects, object references
and the Objects property of the
TStrings class (and descendants
such as TStringList). To start with,
when you have an instance of any
Delphi object, the variable that you
use is (despite its appearance) a
pointer to the object. So, a declara-
tion such as:

var
Foo: TFoo;

is actually declaring a four-byte
pointer variable that can hold the
address of an object. Without any
typecasting, this particular
pointer (or object reference as it is
called) can be told to refer to an
instance of TFoo or any class inher-
ited from TFoo. When you create an
object for the object reference to
point to, using a statement like

Foo := TFoo.Create;

it gets assigned a value. The right-
hand side of the expression is eval-
uated, causing the TFoo instance to
be created. The expression evalu-
ates to the address of the object
(an object reference value) and
this value is assigned to the object
reference variable on the left-hand
side of the assignment. The pro-
grammer must free this object.

Despite the fact that the object
reference is a pointer to an object
instance, Borland made sure that
programmers do not have to use
pointer syntax for accessing
objects. When you refer to, for
example, Button1.Caption, the
compiler causes the object refer-
ence to be de-referenced so that
the Caption property of the object
itself can be evaluated. The same is
true of 32-bit Delphi strings, inter-
face references (Delphi 3 and later)
and dynamic arrays (Delphi 4 and
later). These are also internally
represented as pointers which are
automatically de-referenced.

All objects must be freed in
some way. Components (objects
of type TComponent or classes
inherited from TComponent) provide
a mechanism for the programmer
to delegate responsibility of free-
ing the component to another
component. This other compo-
nent (which is specified as a
parameter to the constructor of
the component in question)
becomes the component’s owner
and, during its own destruction,
will destroy (or free) all compo-
nents it owns.

Components placed on a form at
design-time are owned by the
form. When the form is destroyed,
all the components on the form are
also destroyed. All of the auto-
created forms are owned by

TDataType = (dtShortString, dtDouble, dtInteger);
...
procedure TForm1.TheComponentEventHandler(DataType: TDataType; var Data);
begin
case DataType of
dtShortString: ShowMessage(ShortString(Data));
dtDouble: ShowMessage(FloatToStr(Double(Data)));
dtInteger: ShowMessage(IntToStr(Integer(Data)));

end
end;

➤ Listing 6: An event with an untyped var parameter
(and problems for the Object Inspector).

procedure TForm1.TheComponentEventHandler(DataType: TDataType; Data: Pointer);
begin
case DataType of
dtShortString: ShowMessage(ShortString(Data^));
dtDouble: ShowMessage(FloatToStr(Double(Data^)));
dtInteger: ShowMessage(IntToStr(Integer(Data^)));

end
end;

➤ Listing 7: An event using a pointer parameter.

70 The Delphi Magazine Issue 55

the Application object. When the
program closes and the Applica-
tion object gets destroyed, all
forms are destroyed, which then
destroys the components on them.

Apart from the cases of owned
components (and forms), all
objects created by the program-
mer must be freed by the program-
mer. This is one of the cardinal
rules of Delphi programming.

As the questioner has seen, a
TStringList has a way of storing an
object in association with each
string in the list. This is done by
calling the AddObject method
instead of Add. AddObject takes a
string value and an object refer-
ence (declared as type TObject, so
any Delphi object reference can be
passed along). The string is stored
in the Strings array property and
the object reference is stored in
the Objects array property.

The key point about the Objects
array property is that it is an array
of TObject references. In other
words, it is an array of addresses. It
keeps a record of the object refer-
ence you pass in, and that is all it
stores. It does not ‘copy’ the object
passed in, in any way. It merely
records that object’s address.

The question suggests that there
is an instance of a custom object,
with various data fields set with
values on each iteration of a loop.
After all the data fields are set, the
object is passed (with a string) to
the AddObject method of a string

list. This causes the address
of the custom object to be
stored in the Objects array;
this object reference will
still refer to the original
instance of the custom object.

The next iteration of the loop
replaces the data fields in the
custom object with new values
describing the next record in the
table and passes its address to
AddObject. The remaining
iterations do the same again.

The end result is that the Objects
array is filled with duplicate
values. Each entry will hold the
address of the original custom
object instance whose data fields
have information describing (since
the table-reading loop has fin-
ished) the last record in the table.
Figure 1 tries to show what is going
on with the Objectsarray property.

Looping through the stringlist’s
entries and accessing the value of
the Objects array will simply return
you the custom object instance.
Consequently, if you are using the
object returned from the Objects
array property as a basis for filling
the cells in a string grid row, you
will find that all the rows look the
same, because you are reading
from the same object for each row.

So the initial problem is that if
you want to store multiple objects
in a TStringList, you must create
as many instances as you want to
store. Each instance should be

passed to AddObject, so the string
list can hold object references for
each individual object instance.
Listing 8 shows some sample code
that does this (from project
GridEg.Dpr on this month’s disk).

When you do this, you must
remember to add code to loop
through the stringlist destroying
any objects you have given it. The
stringlist takes no responsibility
for destroying these objects. Since
the programmer created them, the
programmer must free them. It is a
pity that the help for the Objects
property of a TStringList doesn’t
mention this: it’s a common
mistake to leave objects unfreed in
stringlists. There’s some sample
code at the end of Listing 8.

The TStringGrid component
actually has an Objects array prop-
erty of its own. The content of each
cell is normally accessed through
the Cells array property. The
Objects property allows each cell
to have an associated object
(again, by storing object refer-
ences). The help for this property
does correctly emphasise the
situation: ‘The string grid does not
own the objects in the Objects array.
Objects added to the Objects array
still exist even if the string grid is

type
TRecordDesc = class(TObject)
public
CustNo,
State: String;

end;
procedure TForm1.FormCreate(Sender: TObject);
var
List: TStrings;
RecordDesc: TRecordDesc;
Loop: Integer;

begin
List := TStringList.Create;
try
tblCustomer.Open;
{ Loop through table records }
while not tblCustomer.Eof do begin
{ Create new object instance }
RecordDesc := TRecordDesc.Create;
try
{ Set up object data fields }
RecordDesc.CustNo :=
tblCustomer.FieldByName('CustNo').AsString;

RecordDesc.State :=
tblCustomer.FieldByName('State').AsString;

{ Let string list look after object for a while }

List.AddObject(tblCustomer.FieldByName(
'Company').AsString, RecordDesc);

except
RecordDesc.Free;

end;
tblCustomer.Next

end;
tblCustomer.Close;
Grid.RowCount := List.Count + 1; { Initialise grid }
Grid.ColCount := 3;
Grid.Cells[0, 0] := 'Customer No.';
Grid.Cells[1, 0] := 'Company';
Grid.Cells[2, 0] := 'State';
{ Loop through string list setting up grid rows }
for Loop := 0 to List.Count - 1 do begin
Grid.Cells[0, Loop + 1] :=
TRecordDesc(List.Objects[Loop]).CustNo;

Grid.Cells[1, Loop + 1] := List[Loop];
Grid.Cells[2, Loop + 1] :=
TRecordDesc(List.Objects[Loop]).State;

end;
finally
for Loop := 0 to List.Count - 1 do
List.Objects[Loop].Free; { Delete objects in list }

List.Free { Delete list }
end

end;

➤ Listing 8: Adding objects to a
string list and using them.

Element 0Element 0

Custom objectCustom object
instanceinstance

Element 1Element 1

Element 2Element 2
Element 3Element 3
Element 4Element 4
Element 5Element 5
Element 6Element 6

ObjectsObjects ararray prray properopertyty➤ Figure 1: Multiple object
references all referring
to the same object.

72 The Delphi Magazine Issue 55

destroyed. They must be explicitly
destroyed by the application.’

Because of this lack of owner-
ship, the Objects array property is
often used for other purposes. You
can consider the Objects array
property as an array of 4-byte stor-
age locations (each object refer-
ence is 4 bytes in size). If you want
to hold, for example, a Longint in
association with each string then
you can, using a typecast:

List.AddObject(‘A string’,
TObject(57));

will add an integer value in the
place of an object reference. This
statement extracts an integer and
assigns it to an integer property:

Tag:=Longint(List.Objects[0]);

ListView Checkbox Changes

QI seem to be having a prob-
lem detecting when the

check status changes for an item in
the ListView. I have tried looking at
the OnChange event and interrogat-
ing the TItemChange parameter but
that doesn’t help me.

AWhen a ListView (Delphi 3
onwards) has its Checkboxes

property set to True, each list item
has a checkbox on its left. The user
can check these checkboxes as
they like, and program code can
examine the Checked property of
the TListItem objects in the
ListView to see which ones are
checked. However, the component

does not have an event which trig-
gers when a checkbox is checked,
so it’s difficult to write code that
reacts immediately to this.

The OnChangeor OnChanging event
handlers can be used to detect
checkbox changes. If the Change
parameter (type TItemChange) has a
value of ctState, it indicates that
either the Cut, Selected, Focused or
Checked property of the list item
passed as the Item property has
changed or it is about to change.
But, the OnChange event handler
doesn’t tell you which of the four
properties has changed and the
OnChanging event handler doesn’t
tell you which property is about to
change. The ListView component
fires the OnSelectItem event after
the OnChange event, when the
Selected property of the list item
changes, but there is no dedicated
indication for the other properties.

However, you could record the
state of the Checked property in

the OnChanging event handler and
do a comparison in the OnChange
event handler. A Boolean form data
field can be used to record this
information. You can use code like
that in Listing 9 (from project
ListViewEg.Dpr on the disk).

Instead of doing this recording
and comparison in the event han-
dlers of a ListView component, you
could move the extra code into a
new component with a dedicated
event for the job. As a component
user, you customise a compo-
nent’s functionality by making
event handlers for available
events. As a component writer,
you need to take a step back. You
don’t make event handlers, but
override the polymorphic routines
which trigger events in the first
place. The OnChange event is trig-
gered from within the polymor-
phic Change method. OnChanging is
triggered from the CanChange
method. With this information, we

TForm1 = class(TForm)
...

private
FListItem: TListItem;
FChecked: Boolean;

end;
...
procedure TForm1.ListView1Changing(Sender: TObject; Item: TListItem;
Change: TItemChange; var AllowChange: Boolean);

begin
if Change = ctState then begin
FListItem := Item;
FChecked := Item.Checked

end
end;
procedure TForm1.ListView1Change(Sender: TObject; Item: TListItem;
Change: TItemChange);

const
BooleanIdents: array [Boolean] of string = ('False', 'True');

begin
if (Change = ctState) and (Item = FListItem) and
(Item.Checked <> FChecked) then begin //A checkbox has been toggled
ListBox1.Items.Add(Format('Item %d (%s): Checked = %s',
[Item.Index, Item.Caption, BooleanIdents[Item.Checked]]));

ListBox1.ItemIndex := ListBox1.Items.Count - 1
end

end;

➤ Listing 9: Detecting when a ListView’s checkboxes are toggled.

unit ListViewEx;
interface
uses Classes, ComCtrls;
type
TItemCheckEvent = procedure (Sender: TCustomListView;
Item: TListItem; Checked: Boolean) of object;

TListViewEx = class(TListView)
private
FOnCheck: TItemCheckEvent;
FChecked: Boolean;
FListItem: TListItem;

protected
function CanChange(Item: TListItem; Change: Integer):
Boolean; override;

procedure Change(Item: TListItem; Change: Integer);
override;

published
property OnCheck: TItemCheckEvent read FOnCheck
write FOnCheck;

end;
procedure Register;
implementation
uses CommCtrl;

procedure Register;
begin
RegisterComponents('Clinic', [TListViewEx]);

end;
function TListViewEx.CanChange(Item: TListItem; Change:
Integer): Boolean;

begin
Result := inherited CanChange(Item, Change);
if Result and (Change = LVIF_STATE) then begin
FListItem := Item;
FChecked := Item.Checked

end
end;
procedure TListViewEx.Change(Item: TListItem; Change:
Integer);

begin
inherited;
if (Change = LVIF_STATE) and (Item = FListItem) and

(Item.Checked <> FChecked) and Assigned(FOnCheck) then
FOnCheck(Self, Item, Item.Checked)

end;
end.

➤ Listing 10: An enhanced
ListView component.

March 2000 The Delphi Magazine 73

can override these two methods
and use similar code to that in List-
ing 9. Listing 10 shows a compo-
nent implementation, where you
can see that the methods have raw
Windows constants passed in,
rather than Delphi TItemChange
values like the event handlers.

This component is written in a
Delphi-esque fashion, overriding
VCL methods. You could take a

more Win32-oriented approach, if
you know how the underlying Win-
dows ListView control deals with
having checkboxes toggled.

When a checkbox has its state
toggled, the control sends a special
notification message (wm_Notify
passed along with some ListView-
specific parameters) to its parent.
In a Delphi application, if a control
sends wm_Notify to its parent, a
cn_Notify message will be sent
back to the control with the same
parameters. This message we can

catch and do what we need to in
the message handler.

The notification message is gen-
erated just before an item changes
(this is how the CanChange method
gets called, and how the OnChan-
ging event arises) and just after an
item changes (giving rise to the
Change method and OnChange
event). Listing 11 shows the alter-
native implementation. The two
units which implement these
enhanced ListView components
are included on this month’s disk.

unit ListViewEx2;
interface
uses
Windows, Messages, Classes, Controls, ComCtrls, CommCtrl;

type
//This is a variation on the wm_Notify message record
//that is used for certain ListView notification messages
TWMListViewNotify = packed record
Msg: Cardinal;
IDCtrl: Longint;
NMLV: PNMListView;
Result: Longint;

end;
TItemCheckEvent = procedure (Sender: TCustomListView;
Item: TListItem; Checked: Boolean) of object;

TListViewEx2 = class(TListView)
private
FOnCheck: TItemCheckEvent;

protected
procedure CNNotify(var Msg: TWMListViewNotify);
message cn_Notify;

published
property OnCheck: TItemCheckEvent
read FOnCheck write FOnCheck;

end;
procedure Register;

implementation
procedure Register;
begin
RegisterComponents('Clinic', [TListViewEx2]);

end;
procedure TListViewEx2.CNNotify(var Msg: TWMListViewNotify);
const
OldChecked: Boolean = False;
OldItem: Integer = -1;

begin
with Msg.NMLV^ do
case hdr.code of
LVN_ITEMCHANGING:
begin
Olditem := iItem;
OldChecked := Items[OldItem].Checked;

end;
LVN_ITEMCHANGED:
if (iItem = OldItem) and (Items[iItem].Checked <>
OldChecked) and Assigned(FOnCheck) then
FOnCheck(Self, Items[iItem], Items[iItem].Checked)

end;
inherited;

end;
end.

➤ Listing 11: A message-based
enhanced ListView.

	RTTI And Module Boundaries
	Object Inspector Refuses To Make Event Handler
	TStrings And Object Owners
	ListView Checkbox Changes

